Update paper link

This commit is contained in:
Sean Bowe 2017-10-31 09:35:46 -06:00
parent f21732a8e5
commit 746f45f9e6
No known key found for this signature in database
GPG Key ID: 95684257D8F8B031

View File

@ -2,7 +2,7 @@
This is a [multi-party computation](https://en.wikipedia.org/wiki/Secure_multi-party_computation) (MPC) ceremony which constructs partial zk-SNARK parameters for _all_ circuits up to a depth of 2<sup>21</sup>. It works by taking a step that is performed by all zk-SNARK MPCs and performing it in just one single ceremony. This makes individual zk-SNARK MPCs much cheaper and allows them to scale to practically unbounded numbers of participants.
This protocol is described in a [forthcoming paper](https://eprint.iacr.org/2017/XXX). It produces parameters for an adaptation of [Jens Groth's 2016 pairing-based proving system](https://eprint.iacr.org/2016/260) using the [BLS12-381](https://github.com/ebfull/pairing/tree/master/src/bls12_381) elliptic curve construction. The security proof relies on a randomness beacon being applied at the end of the ceremony.
This protocol is described in a [forthcoming paper](https://eprint.iacr.org/2017/1050). It produces parameters for an adaptation of [Jens Groth's 2016 pairing-based proving system](https://eprint.iacr.org/2016/260) using the [BLS12-381](https://github.com/ebfull/pairing/tree/master/src/bls12_381) elliptic curve construction. The security proof relies on a randomness beacon being applied at the end of the ceremony.
**This is a work in progress.**